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I.  INTRODUCTION 

An extensive investigation of gun  barrel wear in hypervelocity guns was 
sponsored by the National Defense Research Committee during World War II.1 

A key problem was how to compute heat transfer to gun barrels. Nordheim and 
coworkers at Duke University^ devised an interior ballistics scheme to compute 
heat flux from combustion gases using Reynolds analogy between energy and 
momentum transfer for the convective heat transfer coefficient. 

Nordheim observed that the assumption as to the distribution of unburned 
powder significantly changed heat transfer.  The heat transfer at the 
commencement of rifling was least when the propellant was evenly distributed 
behind the projectile; the heat transfer was greatest when the unburned pro- 
pellant remained in the chamber, since all the combustion gases had to pass 
the commencement of rifling. The difference in heat transfer diminished down 
the barrel to the point where all the propellant was consumed. Nordheim pro- 
vided results for both assumptions; he felt the short, granular propellants 
conformed to the assumption of evenly distributed grains. 

Nordheim's work implied that propelling charges made with stick propellants 
would be more erosive than propelling charges with equivalent interior ballis- 
tics made with granular propellants, since the unburned stick propellant 
would remain in the chamber. A Swedish investigator, Jacobsson, recently 
claimed confirmation of Nordheim's hypothesis^. 

Jacobsson used seven-perforated granular propellant and stick propellant 
in an Ml38 37-mm anti-aircraft gun to monitor movement of the unburned powder. 
Jacobsson concluded that seven-perforated, granular powder follows the 
projectile, while stick propellant remains in the chamber until the projectile 
leaves the muzzle. Jacobsson further observed that: "discrepancies in 
powder behavior may explain the great differences in bore wear which are 
observed in conjunction with firing using these types of powder, regardless 
of whether measures were taken to prevent wear." 

During the course of investigations to discern the unusual wear produced 
by the 155-inm XM201E2 charge, heat transfer and erosion sensor measurements 
were done with a series of 155-mm propelling charges in which the wear-reducing 

2 
"Hyperveloeity Guns and the Control of Gun Erosion," Summary Technical Report 
of Division l3  National Defense Research Committee,  Wash,  DC3   1946. 

2 
L.W.   Nordheim, H.  Soodak,  and G.   Nordheim,   "Thermal Effects of Propellant 
Gases in  Erosion Vents and Guns," NDRC Armor and Ordnance Report No.  A-262, 
March 1944. 

D.  Jacobsson,   "Movement of Powder in Bore During Firing," Forsvarets 
Forskningsanstalt,  A1589-D9,  D2,  June 1974,  pp 1-35. 



additives were removed. '  Among the charges tested were a stick propellant 
version, XM208, of the XM203E2 charge with granular propellant. Since heat 
transfer data had been collected in separate laboratories, and the use of the 
heat transfer technique and erosion sensors was in its infancy, the larger 
wear and heat input for the XM208 charge stirred little interest.  In this 
report Nordheim's hypothesis about the distribution of unburned propellant is 
tested by computing heat inputs for the XM203E2 and XM208 charges assuming the 
granular propellant in the XM203E2 is evenly distributed while the stick 
propellant in the XM208 charge stays in the chamber. These heat inputs will 
be compared to heat inputs measured in the absence of the Ti02-wax liner. 

The gun barrel wear community in the US apparently was unaware of Nordheim's 
implication for the erosivity of stick propellant as evidenced by the failure 
to mention the topic during tri-service symposia on gun barrel wear in 1970 
and 1977'. A technical forecast for extending the wear life of Army guns even 
included stick propellant as an option.^ The US community during this period 
was preoccupied with understanding the many subtle features influencing the 
wear-reducing additives with which the US had experience. Stick propellant 
had limited trials, and on rare occasions where  wear data surfaced with 
stick in place of granular propellant, the difference was attributed to 
interaction with the TiCL-wax additive.4,8,9 xhe need to understand whether 
stick propellant is more erosive than granular propellant grows acute in the 
US, since stick propellant is being evaluated for the 120-mm HEAT round,-^ 155-mm 
propelling charges, -^ and an automatic anti-armor cannon. 12 

4 
F.A.   VassallO;   "An Evaluation of Heat Transfer and Erosion in the 155-mm M185 
Cannon," Calspan Technical Report No.   YL-5ZZ7-D-13  July 1976. 

J.R,   Ward and T.L.  Brosseau3   "Effect of Wear-Reducing Additives on Heat Transfer 
into the 155-mm M185 Cannon," BRL Memorandum Report No.   2730,  February 1977. 
(AD A037274) 
Proceedings of the Tri-Service Symposium on Gun Barrel Wear and Erosion, 
Watervliet Arsenal,  Watervliet,  NY,  February 1970. 

y 
Proceedings of the Tri-Service Gun Tube Wear and Erosion Symposium, ADPA, 
Dover,  NJ,  March 1977. 

o 
J.R.  Ward,   "A New Initiative in Gun Barrel Wear and Erosion," Proceedings of 
the Tri-Service Gun Tube Wear and Erosion Symposium,  ADPA,  Dover,  NJ, March 1977. 

g 
A.  Yermal and E.   Wurzel,   "Comparison of Wear Characteristics of the 152-rrm 
XM150 Gun Tubes Using XM578 Cartridge Model-Six Slug Rounds with Wear-Reducing 
Additives  (Ti09 vs_ Talc)," Picatinny Arsenal Technical Memorandum,  October 
1970. 

10 
A. Albright,   "Overview of 120-mm Tank Main Armament System," 1980 JANNAF 
Propulsion Meeting,   CPIA Publication 325,  March 1980. 

11 
H.D.  Favr, R.S.  Westley,  and B.  Howard,   "Propulsion Technology for the Enhanced 
Self-Propelled Artillery Weapons System," 1980 JANNAF Propulsion Meeting, 
CPIA Publication 315,  March 1980. 

12 
G.  Samos,  B.   Grollman,  and J.R.   Ward,   "Barrel Erosion Rate of a 60-mm Gun," 
BRL Memorandum Report No.   02857,  August 1978.       (AD A059804) 

10 



II.  HEAT TRANSFER AND WEAR DATA 

Table 1 lists characteristics of the XM203E2 charge and two stick 
propellant analogs, the XM208 and the FH70 Zone 3. The zone 3 charge is one 
version of the top-zone charge for the 155-inm FH70 howitzer. 

Calspan Corporation measured total heat input at three axial locations 
on the M185 barrel with thermocouples imbedded in the barrel wall.  The 
thermocouples were placed so they were directly over a groove. One thermo- 
couple was placed forward of the commencement of rifling where remaining tube 
life is estimated from the bore enlargement.1^ Another thermocouple was 
mounted one-third the distance between the commencement of rifling and the 
muzzle, while the third thermocouple was mounted at the muzzle. Wear sensors 
were placed on the bore surface in the commencement of rifling region.  The 
sensors were made of steel or inconel. Bore surface temperatures at the com- 
mencement of rifling were computed from the total heat input and interior 
ballistic trajectories.^ At BRL the total heat input was measured at the 
commencement of rifling with four thermocouples imbedded at different distances 
from the bore surface.1^ In order to obtain equivalent units of energy per 
unit area, the BRL measurements are divided by the bore perimeter (613.7 mm). 

Table 2 summarizes which zone 8S charges were tested. The goal of the 
tests was to reduce the wear of the XM201E2 charge, so no systematic testing 
of zone 8S charges was planned. 

Table 3 summarizes the results obtained by Calspan with the zone 8S charges, 
the BRL results are summarized in Table 4. 

One should note first that the Calspan and BRL data for the XM203E2 charge 
cannot be compared directly since the BRL heat input represents heat input 
with a "clean-out" round after each shot. The Calspan heat input is the average 
of five consecutive XM203E2 shots.  In order to see how well heat inputs 
agree between the two sets of measurements, charges without wear-reducing 
additives are compared in Table 5. One sees the Calspan measurements are three 
percent greater. Using 1.034 as a correction factor the BRL heat inputs 
corrected to be consistent with Calspan are 1,336 J/mm2 and 1.183 J/mm2 for 
the XM203E2 charge minus its additive and XM203E2 charge, single-shot 
respectively. 

12 
"Evaluation of Cannon Tubes",  Dept of the Army Tedhnioal Manual TM-9-1000-202- 
14,  November 1976. 

14 
F.A.  Vassallo,   "Mathematical Models and Computer Routines Used in Evaluation 
of Caseless Ammunition Heat Transfer," Calspan Report No.   GM-2948-Z-7,  June 
1971. 

15 
T.L.  Brosseau,   "An Experimental Method for Accurately Determining the Temper- 
ature Distribution and Heat Transferred in Gun Barrels," BRL Report No.   1740 
September 1974.      (AD B000171L) 

11 
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Figure 1 summarizes the heat inputs from Table 3 and the modified BRL 
heat inputs.  Interpretation of some of the data is confounded by the wear- 
reducing additives and missing values in the commencement of rifling region. 
Nonetheless, one sees the XM208 charge produces greater heat input than the 
XM203E2 even when the wear-reducing additive is taken from both charges. The 
difference between the stick and granular propellant decreases downtube as 
expected from Nordheim's hypothesis that the distribution of unburned propellant 
accounts for the greater heat input near the commencement of rifling.  At the 
muzzle the zone 3 charge with cordite NQ has the smallest heat input.  The 
trend from the muzzle to 2.108m RFT, suggests the stick cordite NQ propellant 
is more erosive than the granular M30A1 propellant at the commencement of 
rifling. More firings minus additives are required to separate propellant type 
from the wear-reducing additives effect on heat transfer. 

Ill,  HEAT TRANSFER COMPUTED WITH NORDHEIM'S METHOD 

The procedure Nordheim outlined in Chapter VI of his report will be used 
here to compute heat input at the commencement of rifling region for the 
XM203E2, XM208, and the European Zone 3 charges, each minus wear-reducing 
additives. The equations will be taken directly from Nordheim; the report 
should be consulted directly for more detail or explanation. 

Propellant properties were determined with the BLAKE thermochemical code; 
other interior ballistic parameters were taken from Heppner's report. 7 Nordheim's 
values for the physical properties of gun steel are also used here. 

The basic relation for starting the computation of heat transfer in guns 
with Nordheim's method is the so called heating parameter, L, defined as follows: 

k3/4 

L = 43.1 
AS  \   (c"*  )    /'-^pV   /„  \5/4 

where    X = friction factor, 
Cp = specific heat of propellant gases, 
k = thermal conductivity of steel, 
c = specific heat of steel, 

p = density of steel, 

C = charge weight, 
m = reduced projectile mass, 
A = cross-section area of barrel, 
F = impetus of propellant, 
A = loading density, 

Pp = propellant density, and 
P   = maximum chamber pressure, 
max r 

7 A 
E.  Fveednan,   "BLAKE-A Ballistia Thermodynanrto Code Based on TIGER," Proceedings 
of the International Symposium on Gun Propellents,  Pioatinny Arsenal,  Dover, 
NJ,   October 1973. 

17 
L.D.  Heppner,   "Setback and Spin for Artillery,  Mortar,  Recoilless Rifle and 
Tank Ammunition," Report No.  APG-MT-4503,  September 1974. 

15 
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All quantities are defined by the interior ballistic inputs except X and m. 
These quantities are defined below 

X =   (14.2 + 4 log10 D)"
2  , (2) 

where D = bore diameter, cm , 

The reduced projectile mass, m, is defined by 

m = 1.04 (m + C/3)  , (3) 

where m = projectile mass. Another relation needed to compute the heat transfer 
is the reduced time coefficient, a, given below 

r Cd-A/pJ -., 

re _ L  m maxJ     , (4) 
0.18 U (1-A/p ) 

ov    p-7 

where U = chamber volume.  The heat transfer at a specific location is then 

i 
•  Ij . (5) 

(^) 

where I, = a function of L. 

The appropriate functional dependence for the zone 8S charges with a 
propellant with initial temperature of 27°C  (300K) and 2,500 K flame temperature 
is illustrated in Figure 2.  If the flame temperature or initial temperature 
of propellant is different from the nominal values of 2,500 K and 27°C,   then 
Ik in Eq. (5) is replaced by 1^ defined below 

T T 

^ =  27500 h  " [eo " 300 ^   -     2T500- )] S ' C6) 

where    T = flame temperature 

eo = initial temperature relative to 27
0C, and 

S = function of L. 

Figure 3 illustrates the functional dependence of S with L; in all calculations 
here the initial propellant temperature is 270C, so 6 =0. 

17 
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The above procedure applies to the assumption the unburned propellant is 
evenly distributed. Some modifications must be made to compute heat transfer 
with the unburned propellant left in the chamber. The friction factor is 
defined as 

j-    =     (17.7 + 4 log10 D)
2 (7) 

b 

where the subscript, b, refers to the assumption of unburned powder in the 
chamber. Eq. (1) is used with Xb to obtain a value of Lb- This heating 
parameter is related to L at the commencement of rifling region by 

L = ^(1^ 0.55). ' (8) 

Figure 4 depicts the dependence of I and L under the assumption unburned 
powder stays in the chamber. 

The appropriate propellant properties and interior ballistic parameters 
are given in Tables 6 and 7.  Nordheim gives the physical properties for 
gun steel as 

, 2 i 
(pck)"* = 2.8 lm

al  
s  , or (9) 

, 7  2 i 
(pck)"* = 6.7x10"' 2^— . (10) 

Table 8 summarizes the heat inputs computed with Nordheim1s scheme. 
One sees the heat input computed for the XM208 charge is eighteen percent 
higher than the heat input computed for the XM203E2 charge which reflects 
how the unburned propellant distribution affects heat transfer.  The experi- 
mental heat input for the XM208 charge is thirteen percent higher than the 
XM203E2 charge, so the greater heat input for the XM208 charge can be accounted 
for solely by the unburned propellant distribution.  The zone 3 charge's heat 
input further illustrates the strong influence the propellant distribution 
has on the heat transfer. The zone 3 charge has cordite NQ, a propellant with 
a flame temperature of 2,800K, yet the heat input for the zone 3 charge is 
greater than the XM203E2 with a 3,000K flame temperature propellant, M30A1. 

In order to see how much lower the flame temperature of stick propellant 
must fall in order to match the heat input from the XM203E2 charge, the 
following calculation was performed.  First, the friction factor for the 
stick propellant calculation was varied until the computed heat input matched 
the experimental heat input. 
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TABLE 8.  HEAT INPUTS COMPUTED WITH NORDHEIM'S METHOD' 

1/X 

Lb 

L 

h 
S 

I 
CD 

Q, J/mm" 

XM205E2 

360 

60.6 

3,590 

2.62 

4,465 

1.37 

Q, J/mm , expt. 1.34 

XM208 

504 

40.9 

63.4 

4,140 

2.70 

5,130 

1.61 

1.52 

Zone 3 

504 

39.7 

61.6 

4,080 

2.66 

4,790 

1.48 

All charges minus wear-reduaing additives. 

A value of 550 for 1/X gave a computed heat input of 1.52 J/iran .  Heat inputs 
for the XM208 were then computed with various flame temperatures.  Figure 5 
illustrates the results showing the flame temperature must be reduced to 
2,700K to match the XM203E2.  To appreciate how significant is the effect of 
the unburned powder distribution on heat transfer, one should note Smith-O'Brasky's 
empirical wear formula accounts for the effect of the wear-reducing additive 
by reducing the flame temperature by 300K.18 

A contemplated product-improvement for the zone 8S charge envisions 
replacing M30A1 propellant with M31E1 stick propellant which has a flame 
temperature of approximately 2,600K.  Figure 4 suggests that a wear-reducing 
additive should be used with the M31E1 propellant, since heat input for the 
XM203E2 fired repeatedly is 1.12 J/inm2. 

C.S. Smith and J.S. O'Bvasky, "A Procedure for Gun Barrel Erosion Life 
Estimation " Proceedings of the Tri-Service Symposium on Gun Tube Wear 
and Erosion,  ADPA,  Dover, March 1977. 
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Figure 5. Heat Input vs_ Flame Temperature for XM208 Charge Minus Additive 
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IV.  CONCLUSIONS 

1. Examination of heat transfer data collected by Calspan and BRL shows the 
heat input from the XM208 charge without additive is thirteen percent 
greater than the XM203E2 charge without additive in the commencement of 
rifling region. 

2. Heat inputs were computed for these two charges with Nordheim's interior 
ballistic scheme.  The unburned, granular propellant in the XM203E2 charge 
was assumed to be evenly distributed throughout the gun while the unburned 
stick propellant in the XM208 charge stayed in the chamber.  The computed 
heat transfer was eighteen percent higher for the stick propellant 
suggesting stick propellant is more erosive than granular propellant because 
the unburned propellant stays in the chamber. 

3. Heat transfer calculations with the zone 3 charge for the FH70 which uses 
stick, cordite NQ propellant predict the zone 3 charge will be more erosive 
than the M203 charge despite the use of a propellant with a 200K lower flame 
temperature. 

4. Heat transfer results show the flame temperature of the propellant in the 
XM208 charge must be reduced 300K to obtain equivalent heat input for 
granular, M30A1 propellant.  The results also suggest that if the granular 
M30A1 propellant in the M203 charge is replaced with stick M31E1 propellant, 
a wear reducing additive will still be needed to maintain current wear 
life. 
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